LIE GROUPS AND LIE ALGEBRAS FINAL EXAMINATION

Total marks: 100

Attempt all questions

- (1) Let G be a linear group, \mathfrak{g} be its Lie algebra, and $exp : \mathfrak{g} \to G$ be the exponential map. Describe the image and the fibres of exp for the groups SO(3) and $SL_2(\mathbb{R})$? (10 + 15 marks)
- (2) Construct a 2 : 1 group homomorphism $SU(2) \rightarrow SO(3)$. (10 marks)
- (3) Let $f: G \to G'$ be a differentiable homomorphism between two linear groups G and G'. Let \mathfrak{g} and \mathfrak{g}' be their respective Lie algebras. Prove that f induces a homomorphism of Lie algebras $\phi: \mathfrak{g} \to \mathfrak{g}'$, satisfying $f \circ exp = exp \circ \phi$. (10 + 10 marks)
- (4) Let G be a connected linear group, let g be its Lie algebra. Let H be a connected subgroup of G and let h be its Lie algebra. Prove that h is an ideal of g, if and only if, H is a normal subgroup of G. (15 marks)
- (5) Define the Ad and ad maps for a linear group G and its Lie algebra g, and prove that ad is the induced homomorphism of Lie algebras of Ad. (5+10 marks)
- (6) Let $M = M_n(\mathbb{C})$ be the space of all $n \times n$ matrices (for some n), and let $exp : M \to M$ be the exponential map. Write down a formula for the derivative of the exponential map $d(exp)_X$ at any $X \in M$. Using this or otherwise, prove that $d(exp)_X$ is invertible, if and only if, no two eigenvalues of X differ by $2\pi ik$ for $k = 1, 2, 3, \ldots$ (5+10 marks)

Date: April 19, 2017.